
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4352 217

To Support Search as You type by using

MySQL in Databases

Gaikwad Namrata
1
, Mahajan Chetan

2
, Abhishek Ranjan

3
, Manish Kumar

4
, Prof. Manisha Galphade

5

Student, Computer Department, Sinhgad Institute of Technology Lonavala, Pune, India1,2,3,4

Assistant Professor, Computer Department, Sinhgad Institute of Technology Lonavala, Pune, India5

Abstract: As a user types in a keyword query character by character, the type ahead search or search as you type

system computes answers on-the-fly. In this paper we are going to study the way of supporting type ahead search on

data residing in databases. We are going to focus on the way to support this type of search using the language, MySQL

In this paper we are going to study about the way to use the auxiliary indexes stored on tables so that the search

performance can be increased, since we need to achieve an interactive speed which can be done by meeting the high

performance requirements of the functionalities. In this paper we present solutions to both single keyword and

multikeyword queries. We also allow mismatching between query keyword and answers by developing the novel

techniques for fuzzy search by using MySQL. Supporting fuzzy search is important when users have limited knowledge

about the exact representation of the entities they are looking for, such as people records in an online directory.

Therefor it becomes easy for them to retrieve information with the help of this feature. We provide recent search,

history, auto-completion also in this paper.

Keywords: Search As You Type, Type Ahead Search, databases, MySQL, fuzzy search.

I. INTRODUCTION

There is tremendous amount of information available on

internet almost about every possible thing. It is very easy

to retrieve information. The only essential thing is to fire a

search query and the information about it will be right in

front of you within no time. This is exactly what we are
doing in this paper.

Type Ahead Search or Search As you Type helps in

retrieving information across records stored in the

database as a user types in a query keyword character by

character. Most search engines andOnline search forms

support auto-completion, which shows the suggested

queries or even answers “on the fly”.

In this paper we study how to support search-as-you-type
on DBMS systems using the native query language

(MySQL). In our paper we implement exact search and

fuzzy search.

Exact Search: Exact search is also known as prefix search.

As a user types in a query or a partial keyword character

by character, the records containing those initial characters

or the keywords will be displayed immediately.

Fuzzy Search: Fuzzy Search allows minor mismatches.

The system finds the record with keywords that are similar

to the query keyword. For example if a user types „Motr‟ it

will show the result as „Motorola‟. [1]

In this paper we see how to create a Single Page

Application (SAP) for Search-As-You-type using the

Algorithms namely, Heap algorithm, Scan count

Algorithm, Merge skip algorithm and Divide skip

Algorithm that are discussed in section 3. The algorithms

described, help in supporting multithreading and parallel

searching simultaneously.

II. LITERATURE SURVEY

Our project is influenced from the existing search systems

in various DBMS systems like Oracle, Microsoft SQL

server, MySQL etc. The existing search systems having

some drawback such as - It works only for the specific

product, not all of them support the prefix search, and
when we use database extender to support prefix search, it

is not feasible for databases that do not provide such an

extenders for eg. MySQL. When we develop a separate

application layer on databases to construct indexes and

implement algorithm to search queries, its main drawback

is additional hardware costs due to data duplication.

The proposed work is as follows- In our experiment the

solution developed on one databases using standard

MySQL techniques is portable to other databases. Our

goal is to utilize the built-in query engine of the database

system as much as possible. In this way, we can reduce the

programming efforts to support search-as-you-type. Our
MySQL-based techniques enable DBMS systems running

on a commodity computer to support search-as-you-type

on tables with many records. [1]

III. ALGORITHMS
A. Heap Algorithm

Heap algorithm: The frontiers of the lists as a heap are

maintained while merging the lists. At each step, we pop

the top from the heap, and increment the count of the

record id corresponding to the popped frontier record. This

record id is removed from this list, and the next record id

on the list (if any) is reinserted to the heap. We report a

record id whenever its count is at least the threshold T. Let

N = G(Q, q) denote the number of lists corresponding to

the grams from the query string, and M denote the total

size of these N lists. This algorithm requires O(MlogN)
time and O(N) storage space (not including the size of the

inverted lists) for storing the heap of the frontiers of the

lists. [2]

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4352 218

B. Scan Count Algorithm

The Scan count algorithm improves the Heap algorithm by

eliminating the heap data structure and the corresponding

operations on the heap. Instead, an array of counts for all

the string ids in S is maintained. The N inverted list is

scanned one by one. We increment the count

corresponding to the string by 1, for each string id on the

list. The string ids that appear at least T times on the lists

are reported.

Input: set of RID lists and a threshold T;

Output: record ids that appear at least T times on the lists.

1. Initialize the array C of |S| counters to 0's;
2. Initialize a result set R to be empty;

3. FOR (each record id r on each given list) {

4. Increment the value of C[r] by 1;

5. IF (C[r] == T)

6. Add r to R;

7. }

8. RETURN R;

The time complexity of this algorithm is O(M) (compared

to O(MlogN) for the Heap algorithm) and the space

complexity is 0(S), where lSl is the size of the string
collection, since we need to keep a count for each string

id. This higher space complexity (compared to O(N) for

the Heap algorithm) is not a major concern, since this

extra space tends to much smaller than that of the inverted

lists.

This algorithm shows that the T-occurrence problem is

indeed different from the problem of merging multiple

sorted lists into one long sorted list, since we care more

about finding those ids with enough occurrences, rather

than generating a sorted list. [2]

C. Merge Skip

The main idea of this algorithm is to skip on the lists those

record ids that cannot be in the answer to the query, by

utilizing the threshold T. Here too just like the Heap

algorithm, we maintain a heap for the frontiers of these

lists .A key difference is that, during each iteration, we

pop those records from the heap that have the same value

as the top record t on the heap. Let the number of popped

records be n.

If there are at least T such records, we add t to the result

set (line 8 in the algorithm), and add their next records on

the lists to the heap. Otherwise, we are sure record t cannot

be in the answer. In addition to popping these n records,

we pop T-1-n additional records from the heap (line 12).

Therefore, in this case, we have popped T-1 records from

the heap. Let t' be the current top record on the heap. For

each of the T-1 popped lists, we locate its smallest record r

such that r> t'(line 15).This locating step can be done

efficiently using a binary search.

We then push r to the heap (line 16). It is possible to

reinsert the same record on the popped lists back to the

heap if it is equal to the new top record t'. Those lists that

do not have such a record r > t', we do not insert any

record from these lists to the heap

Input: a set of RID lists and a threshold T;

Output: record ids that appear at least T times on the lists.

1. Insert the frontier records of the lists to a heap H;
2. Initialize a result set R to be empty;

3. WHILE (H is not empty) {

4. Let t be the top record on the heap;

5. Pop from H those records equal to t;

6. Let n be the number of popped records;

7. IF (n >T) {

8. Add t to R;

9. Push next record (if any) on each popped list to H;

10. }

11. ELSE{

12. Pop T -1 -n smallest records from H;
13. Let t' be the current top record on H;

14. FOR (each of the T -1 popped lists) {

15. Locate its smallest record r > t' (if any);

16. Push this record to H;

17. }

18. }

19. }

20. RETURN R;

D. Divide Skip

Given a set of RID lists, firstly these lists are sorted based

on their lengths. Then they are divided into two groups.

The L longest lists are grouped to a set Llong, and the

remaining short lists to another set Lshort.

The Merge Skip algorithm is used on Lshort to find

records r that appear at least T -L times on the short lists.

For every such record r and each list tlong in Llong, we

check if r appears on Llong.

This step can be done efficiently using O(log p) time
where p is the length of Ilong if the list is implemented as

an ordered list, or 0(1) time if the list is implemented as an

unordered hash set. If the total number of occurrences of r

among all these lists is at least T, then we add it to the

result set R.

Input: set of RID lists and a threshold T;

Output: record ids that appear at least T times on the lists.

1. Initialize a result set R to be empty;

2. Let Llong be the set of L longest lists among the lists;

3. Let Lshort be the remaining short lists;

4. Use Merge Skip on Lshort to find ids that appear at least
T – L times

5. FOR (each record r found) {

6. FOR (each list in Ljong)

7. Check if r appears on this list;

8. IF (r appears > T times among all lists)

9. Add r to R;

10. }

11. RETURN R

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4352 219

IV. SYSTEM ARCHITECTURE

System Architecture of Search-As-You-Type

In this architecture, a MySQL database for storing the data

that should be searched is proposed. Since the solution is

storing the keywords, reverse key indexes, prefix tables

and calculated neighbors are created, the corpus of data

used for searching could be from any domain. The data for

these auxiliary tables are generated by the use a set of SQL

queries on the base tables and some of the other auxiliary

tables. In order to speed up execution, some of these jobs

could also be taken up in procedural extensions of query

languages supported by the respective databases, if

desired. Oracle PL/SQL is one such example. We stick
mostly to writing SQL queries in order to maintain

database neutrality in this paper.

Frequently accessed sets of similar prefixes, as calculated

by the algorithms described above in section 3 are cached

in the memory using memcache. Most of the

implementations would be able to scale well since the set

of the data is small. But, if the need arises to cache more

and more data as the base tables and the set of keywords

on which this feature needs to be supported expands, a
distributed implementation of memcache can be taken up.

Memcache is also a simple caching solution with simple

„get‟ and „put‟ operations. Its simplicity and high

scalability make it a good choice for this implementation.

[3]

V. CONCUSION AND FUTURE WORK

The proposed project identifies the user search

requirements. It evaluates the efficiency of search at time

and ease paradigm. It increases the time of search and

fakes as if the searching is a lot faster so thus increasing

the user satisfaction and providing him right keywords so
that user may not loose search result just because simple

spelling mistakes or ignorance. In future it is possible to

provide centralized profiling for search preferences and

also to achieve cross web-app prediction compatibility.

ACKNOWLEDGMENT

We express our sincere thanks to our Guide Prof.

ManishaGalphade, for her constant encouragement and

support throughout our project, especially for the useful

suggestions given during the course of project and having

laid down the foundation for the success of this work.

We would also like to thank our Project Coordinators, for

their assistance, genuine support and guidance from early

stages of the project. We would like to thank Prof. Babar,

Head of Computer Department for his unwavering support

during the entire course of this project work.

REFERENCES

[1] Guoliang Li, JianhuaFeng, “Supporting Search-As-You-Type Using

SQL in Databases”, IEEE TRANSACTIONS ON KNOWLEDGE

AND DATA ENGINEERING, VOL. 25, NO. 2, FEBRUARY 2013

[2] Chen Li, Jiaheng Lu, Yiming Lu, " Efficient Merging and Filtering

Algorithms forcApproximate String Searches", Department of

Computer Science, University of California, Irvine, CA 92697, USA.

[3] AparnaVedantham, Prof. M. Ganesh Kumar, " ENTERPRISE USE

CASES AND IMPLEMENTATION ARCHITECTURE OF

SEARCH-AS-YOU-TYPE IN DATABASES USING SQL",

INTERNATIONAL JOURNAL OF PROFESSIONAL

ENGINEERING STUDIES Volume IV/Issue2/OCT2014.

